Electrochemical potential window of molecular crowded electrolyte with various Li salt

Kwen Minjae 2021. 02. 24 Mentor: Oh, Hyunjeong Advisor : Prof. Hye Ryung Byon Department of Chemistry, KAIST

Non-aqueous Battery has...

Safety Issue

Cost Issue

- Flammability

- Toxicity

- Material
- Production

- Wastes

Environmental Issue

 \rightarrow Aqueous Battery can solve this!

Major Limitation

: Electrochemical potential window (EW)

Narrow EW of H_2O

 \rightarrow Hard to use aqueous electrolyte

- Electrochemical potential window?

TABLE 18-1

Standard Electrode Potentials*		
Reaction	<i>E</i> ⁰ at 25°C, V	
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-$	+1.359	
$O_2(g) + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	+1.229	
$Br_2(aq) + 2e^- \rightleftharpoons 2Br^-$	+1.087	
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-$	+1.065	
$Ag^+ + e^- \rightleftharpoons Ag(s)$	+0.799	
$Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$	+0.771	
$I_3^- + 2e^- \rightleftharpoons 3I^-$	+0.536	
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$	+0.337	
$UO_2^{2^+} + 4H^+ + 2e^- \rightleftharpoons U^{4^+} + 2H_2O$	+0.334	
$Hg_2Cl_2(s) + 2e^- \rightleftharpoons 2Hg(l) + 2Cl^-$	+0.268	
$AgCl(s) + e^{-} \rightleftharpoons Ag(s) + Cl^{-}$	+ 0.222	
$Ag(S_2O_3)^{3-}_2 + e^- \rightleftharpoons Ag(s) + 2S_2O_3^{2-}$	+ 0.017	
$2\mathrm{H}^+ + 2\mathrm{e}^- \rightleftharpoons \mathrm{H}_2(g)$	0.000	
$AgI(s) + e^{-} \rightleftharpoons Ag(s) + I^{-}$	-0.151	
$PbSO_4 + 2e^- \rightleftharpoons Pb(s) + SO_4^{2-}$	-0.350	
$Cd^{2+} + 2e^{-} \rightleftharpoons Cd(s)$	-0.403	
$Zn^{2+} + 2e^{-} \rightleftharpoons Zn(s)$	- 0.763	

*See Appendix 5 for a more extensive list.

 $\begin{array}{l} H_2O \text{ Electrolysis}: \ H_2O \rightarrow H_2 + \frac{1}{2} \ O_2 \\ & 1.23V \ !!! \end{array}$

Charging the aq. battery with the voltage higher than 1.23V

Charging barrery!

<u>H₂, O₂ Evolution (=water electrolysis)</u>

- Electrochemical potential window?

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries

Science 2015, 350, 938-943

Water-in-salt electrolyte

Water-in-Salt(WiS) & Water-in-Bisalt(WiBS) electrolyte

- Expansion the EW
- Formation of a stable solid electrolyte interphase (SEI)

Science 2015, **350**, 938-943

- But still,

High cost, Toxicity, ...

Molecular crowding electrolytes for high-voltage aqueous batteries

Nat. Mater. 2020, 19, 1006-1011

Molecular crowding electrolytes for high-voltage aqueous batteries

Jing Xie, Zhuojian Liang Dand Yi-Chun Lu 🗅 🖂

Developing low-cost and eco-friendly aqueous electrolytes with a wide voltage window is critical to achieve safe, high-energy and sustainable Li-ion batteries. Emerging approaches using highly concentrated salts (21-55 m (mol kg⁻¹)) create artificial solid-electrode interfaces and improve water stability; however, these approaches raise concerns about cost and toxicity. Molecular crowding is a common phenomenon in living cells where water activity is substantially suppressed by molecular crowding agents through altering the hydrogen-bonding structure. Here we demonstrate a 'molecular crowding' electrolyte using the water-miscible polymer poly(ethylene glycol) as the crowding agent to decrease water activity, thereby achieving a wide electrolyte operation window (3.2 V) with low salt concentration (2 m). Aqueous Li₄Ti₅O₁₂/LiMn₂O₄ full cells with stable specific energies between 75 and 110 W h kg⁻¹ were demonstrated over 3000 cycles. Online electrochemical mass spectroscopy revealed that common side reactions in aqueous Li-ion batteries (hydrogen/oxygen evolution reactions) are virtually eliminated. This work provides a path for designing high-voltage aqueous electrolytes for low-cost and sustainable energy storage.

Molecular Crowding

Phenomenon that **crowding agents** reach a concentration of more than 80 mg/ml

- \rightarrow Hydrogen-bonding structure of water changed
- \rightarrow Properties of solution can be modified!

Water-miscible polymer Poly(ethylene glycol) (PEG)

can act as a crowding agent.

Widening the window by molecular crowding electrolytes

Molecular crowding electrolytes for high-voltage aqueous batteries

Nat. Mater. 2020, 19, 1006-1011

Potential (V) versus Li/Li* а 1.0 LICoPO4 LiNia Mn. O. 0.8 LiMn₂O LINIO. NIHCE Current density (A g_{AB}⁻¹) 4 Pure H-C 0.6 Electrochemical window = 3.2 V (2 m LiTFSI-94%PEG-6%H₂O) LiCoO, LiMoPO CuHCF 2.0 V 0.4 Ti,P,O, Organic LiFePO, 1.3 V 4.5 V LITI, (PO,) 0.2 94% 0 Traditional MnO, LIV, O, aqueous Mo_cS_n LiATI5012 -0.2 VO. electrolyte TiS. 21 m LiTFS 19.4 m LITFSI-8.3 m LIBETI 32 m KAc--0.4 2 m LiT Li,M, -0.6 Li,C, 1.2 2.0 2.4 2.8 3.2 3.6 4.0 4.4 1.6 4.8 Experimentally obtained from LSV on AB Li*/Li Potential (V) versus Li⁺/Li Higher PEG concentration Widen the EW up to **3.2V** \rightarrow Wider the EW

Aqueous Electrolyte : 2 m LiTFSI-94%PEG-6%H₂O

Nat. Mater. 2020, **19,** 1006-1011

Widening the window by molecular crowding electrolytes

Molecular crowding electrolytes for high-voltage aqueous batteries

C-H (PEG) bending C-H (PEG) stretching H–O (H₂O) stretching 94% 94% H–O (H₂O) bending 90% 90% 71% 1,610 1.680 2,750 3.000 3.250 3,500 1.470 1.540 1.750 3,750 1,400 Wavenumber (cm⁻¹) Wavenumber (cm⁻¹) 0 O of PEG/TFSI H of PEG 0 H₂O Higher PEG concentration Visualized hydrogen-bond network \rightarrow Strengthened H-O bond in H₂O by MD simulation \rightarrow Weaker hydrogen-bond between PEG-H₂O

PEG affects the interaction

among the solvent molecules in the electrolyte

Nat. Mater. 2020, 19, 1006-1011

Widening the window by molecular crowding electrolytes

Molecular crowding electrolytes for high-voltage aqueous batteries Nat. Mater. 2020, 19, 1006-1011 Does PEG affect the anion-solvent interactions, too? C-H (PEG) bending C-H (PEG) stretching H–O (H₂O) stretching 94% 94% $H-O(H_2O)$ bending 3,500 1.680 1,750 2,750 3,000 3,250 1.610 1.400 1.470 1.540 How does EW of electrolyte change Wavenumber (cm⁻¹) → Strengthened H-O bond in H₂O And various anions gen-bond network **Higher PEG concentration** by MD simulation \rightarrow Weaker hydrogen-bond between PEG-H₂O

PEG affects the interaction

among the solvent molecules in the electrolyte

Effect of PEG on electrochemical window

In the previous article (*Nat. Mater.* 2020, **19**, 1006-1011),

- Crowding agent: Liquid PEG, $M_n = 400$ H^{O}
- Linear Sweep Voltammetry
 - Three electrode system
 - Working Electrode: Acetylene black (AB) coated AI foil
 - Counter Electrode: Activated Carbon (AC)
 - Reference Electrode: Ag/AgCl
 - Scan rate: 0.2 mV/s

- Working Electrode: Glassy Carbon (GC, 3φ)
- Counter Electrode: Pt coil
- Reference Electrode: Ag/AgCl (3 M NaCl)

Effect of PEG on electrochemical window

* Three Electrode System

Working Electrode : **Main Reaction** Counter Electrode : Current Related Reference Electrode : Voltage Related

Goal of the research

- 1. Anions used in this research
 - Interaction between anion and $\rm H_2O \rightarrow Hofmeister\ series$

'salting out' of anionic proteins
 CO₃²⁻ SO₄²⁻ HPO₄²⁻ OAc⁻ Cl⁻ Br⁻ l⁻ NO₃⁻ ClO₄⁻ SCN⁻ TFSI Kosmotropes
 Chaotropes

:Strongly hydrated anion : structure-making

: Weakly hydrated anion : structure-breaking

- → Choose five <u>water-soluble</u> Li salts : Li₂SO₄, LiOAc, LiNO₃, LiClO₄, LiTFSI (Others are water-insoluble)
- 2. Expected Result
 - Different onset potential will be shown from different anions.
 - **OER potential** will show significant difference than HER potential

: Anions are expected to show differences at **positively charged electrode**.

Effect of PEG on electrochemical window

Because of the low solubility of Li_2SO_4 ,

2 m Li₂SO₄ - 94%PEG - 6%H₂O

0.2 m Li₂SO₄ - 94%PEG - 6%H₂O

- Li_2SO_4 is **insoluble** in solvent, 94%PEG-6%H₂O
 - 1. Reduce the PEG
 - : 2 m $\text{Li}_2\text{SO}_4\text{--}13\%\text{PEG--}87\%\text{H}_2\text{O}$
 - 2. Reduce the Li₂SO₄
 : 0.5 m Li₂SO₄-45%PEG-55%H₂O

Molecular crowding electrolyte with Li₂SO₄

Because of the low solubility of Li₂SO₄,

WE: Glassy carbon (GC, 3φ), RE: Ag/AgCl (3 M NaCl), CE: Pt coil, 10 min Ar bubbling before experiment, Scan rate: 0.2 mV/s

Molecular crowding electrolyte with various anions

Molecular crowding electrolyte with various anions

* Solid line : 45%PEG-55%H₂O as solvent Dash-dot line : only H₂O as solvent

Solute | 0.5 m Li_2SO_4 , 1 m LiNO_3 , 1 m LiTFSI, 1 m LiClO_4 , 1 m LiOAc

Molecular crowding electrolyte with various anions

- Change of the potential differs from anion to anion

Research Summary

1. Cyclability of the positive electrode for molecular crowding electrolytes

2. 'Concentration' – 'Max. solubility' ratio

	Concentration	Solubility (25°C)	Conc. / Solubility
Li ₂ SO ₄	0.5 m	3.11 m	16.1 %
LiTFSI	1 m	> 20 m	< 5 %
LiClO ₄	1 m	5.62 m	17.8 %
LiNO ₃	1 m	13.1 m*	7.63 %
LiOAc	1 m	6.82 m	14.7 %
			(* Solubility at 28°C)

In this experiment,

ratio was different for each electrolyte

 \rightarrow Changing the concentration to equalize this ratio...

(Solubility at 20 C)

Thank You!